Arthur Eddington

About Arthur Eddington

Who is it?: Astronomer
Birth Day: December 28, 1882
Birth Place: Kendal, British
Died On: 22 November 1944(1944-11-22) (aged 61)\nCambridge, Cambridgeshire, England, United Kingdom
Birth Sign: Capricorn
Residence: England
Citizenship: British
Alma mater: University of Manchester Trinity College, Cambridge
Known for: Eddington limit Eddington number Eddington–Dirac number Eddington–Finkelstein coordinates
Awards: Royal SocietyRoyal Medal (1928) Smith's Prize (1907) RAS Gold Medal (1924) Henry Draper Medal (1924) Bruce Medal (1924) Knights Bachelor (1930) Order of Merit (1938)
Fields: Astrophysics
Institutions: Trinity College, Cambridge
Academic advisors: Robert Alfred Herman
Doctoral students: Subrahmanyan Chandrasekhar Leslie Comrie Gerald Merton G. L. Clark Cecilia Payne-Gaposchkin Hermann Bondi
Influences: Horace Lamb Arthur Schuster John William Graham

Arthur Eddington Net Worth

Arthur Eddington was bornon December 28, 1882 in Kendal, British, is Astronomer. Arthur Eddington was an eminent scientist who is credited with the establishment of many renowned theories, which have been named after him, such as ‘Eddington number’ and ‘Eddington limit’. He was born to a middle-class family and after the sad demise of his father his mother took up the responsibility of the family. He was taught at home before attending school. He excelled as a student and earned several scholarships which helped him in his further studies. His remarkable performance at the ‘Owens College’ earned him the opportunity to attend the prestigious ‘University of Manchester’. Physics was his area of interest and he completed his graduation with a major in the subject. He was trained under the tutelage of great scholars like Arthur Schuster, Horace Lamb, John William Graham and Robert Alfred Herman, and these learned people provided him with vast knowledge and enhanced his excellence. He engaged in experimental works and carried on rigorous research and established theories which served as breakthrough in the world of physics. He was involved in astronomical research and developed theories regarding the interior of stars and stellar movements. He was the first English physicist to explain Einstein’s theory of relativity. His books answer many questions about the universe; however, his fatal disease put an abrupt halt to his investigation of the ‘fundamental theory’.
Arthur Eddington is a member of Scientists

💰 Net worth: Under Review

Some Arthur Eddington images

Famous Quotes:

The mind-stuff of the world is, of course, something more general than our individual conscious minds.... The mind-stuff is not spread in space and time; these are part of the cyclic scheme ultimately derived out of it.... It is necessary to keep reminding ourselves that all knowledge of our environment from which the world of physics is constructed, has entered in the form of messages transmitted along the nerves to the seat of consciousness.... Consciousness is not sharply defined, but fades into subconsciousness; and beyond that we must postulate something indefinite but yet continuous with our mental nature.... It is difficult for the matter-of-fact physicist to accept the view that the substratum of everything is of mental character. But no one can deny that mind is the first and most direct thing in our experience, and all else is remote inference."

— Eddington, The Nature of the Physical World, 276–81.



Eddington was born 28 December 1882 in Kendal, Westmorland (now Cumbria), England, the son of Quaker parents, Arthur Henry Eddington, headmaster of the Quaker School, and Sarah Ann Shout.


His Father taught at a Quaker training college in Lancashire before moving to Kendal to become headmaster of Stramongate School. He died in the typhoid epidemic which swept England in 1884. His mother was left to bring up her two children with relatively little income. The family moved to Weston-super-Mare where at first Stanley (as his mother and sister always called Eddington) was educated at home before spending three years at a preparatory school. The family lived at a house called Varzin, 42 Walliscote Road, Weston-super-Mare. There is a commemorative plaque on the building explaining Sir Arthur's contribution to science.


In 1893 Eddington entered Brynmelyn School. He proved to be a most capable scholar, particularly in mathematics and English literature. His performance earned him a scholarship to Owens College, Manchester (what was later to become the University of Manchester) in 1898, which he was able to attend, having turned 16 that year. He spent the first year in a general course, but turned to physics for the next three years. Eddington was greatly influenced by his physics and mathematics teachers, Arthur Schuster and Horace Lamb. At Manchester, Eddington lived at Dalton Hall, where he came under the lasting influence of the Quaker Mathematician J. W. Graham. His progress was rapid, winning him several scholarships and he graduated with a B.Sc. in physics with First Class Honours in 1902.


Based on his performance at Owens College, he was awarded a scholarship to Trinity College, Cambridge in 1902. His tutor at Cambridge was Robert Alfred Herman and in 1904 Eddington became the first ever second-year student to be placed as Senior Wrangler. After receiving his M.A. in 1905, he began research on thermionic emission in the Cavendish Laboratory. This did not go well, and meanwhile he spent time teaching mathematics to first year engineering students. This hiatus was brief. Through a recommendation by E. T. Whittaker, his senior colleague at Trinity College, he secured a position at the Royal Observatory in Greenwich where he was to embark on his career in astronomy, a career whose seeds had been sown even as a young child when he would often "try to count the stars".


In January 1906, Eddington was nominated to the post of chief assistant to the Astronomer Royal at the Royal Greenwich Observatory. He left Cambridge for Greenwich the following month. He was put to work on a detailed analysis of the parallax of 433 Eros on photographic plates that had started in 1900. He developed a new statistical method based on the apparent drift of two background stars, winning him the Smith's Prize in 1907. The prize won him a Fellowship of Trinity College, Cambridge. In December 1912 George Darwin, son of Charles Darwin, died suddenly and Eddington was promoted to his chair as the Plumian Professor of Astronomy and Experimental Philosophy in early 1913. Later that year, Robert Ball, holder of the theoretical Lowndean chair also died, and Eddington was named the Director of the entire Cambridge Observatory the next year. In May 1914 he was elected a Fellow of the Royal Society and won their Royal Medal in 1928 and delivered their Bakerian Lecture in 1926.


When conscription was introduced in Britain on 2 March 1916, Eddington intended to apply for an exemption as a conscientious objector. Cambridge University authorities instead requested and were granted an exemption on the ground of Eddington's work being of national interest. In 1918, this was appealed against by the Ministry of National Service. Before the appeal tribunal in June, Eddington claimed conscientious objector status, which was not recognized and would have ended his exemption in August 1918. A further two hearings took place in June and July, respectively. Eddington's personal statement at the June hearing about his objection to war based on religious grounds is on record. Astronomer Royal, Sir Frank Dyson, supported Eddington at the July hearing with a written statement, emphasising Eddington's essential role in the solar eclipse expedition to Principe in May 1919. Eddington made clear his willingness to serve in the Friends' Ambulance Unit, under the jurisdiction of the British Red Cross, or as a harvest labourer. However, the tribunal's decision to grant a further twelve months exemption from military Service was on condition of Eddington continuing his astronomy work, in particular in preparation for the Principe expedition. The war ended before the end of his exemption.


Eddington wrote a clever parody of The Rubaiyat of Omar Khayyam, recounting his 1919 solar eclipse experiment. It contained the following quatrain:


During the 1920s and 30s, Eddington gave numerous lectures, interviews, and radio broadcasts on relativity, in addition to his textbook The Mathematical Theory of Relativity, and later, quantum mechanics. Many of these were gathered into books, including The Nature of the Physical World and New Pathways in Science. His skillful use of literary allusions and humour helped make these famously difficult subjects quite accessible.


Throughout this period, Eddington lectured on relativity, and was particularly well known for his ability to explain the concepts in lay terms as well as scientific. He collected many of these into the Mathematical Theory of Relativity in 1923, which Albert Einstein suggested was "the finest presentation of the subject in any language." He was an early advocate of Einstein's General Relativity, and an interesting anecdote well illustrates his humour and personal intellectual investment: Ludwik Silberstein, a Physicist who thought of himself as an expert on relativity, approached Eddington at the Royal Society's (6 November) 1919 meeting where he had defended Einstein's Relativity with his Brazil-Principe Solar Eclipse calculations with some degree of skepticism, and ruefully charged Arthur as one who claimed to be one of three men who actually understood the theory (Silberstein, of course, was including himself and Einstein as the other). When Eddington refrained from replying, he insisted Arthur not be "so shy", whereupon Eddington replied, "Oh, no! I was wondering who the third one might be!"


With these assumptions, he demonstrated that the interior temperature of stars must be millions of degrees. In 1924, he discovered the mass-luminosity relation for stars (see Lecchini in #External links and references ). Despite some disagreement, Eddington's Models were eventually accepted as a powerful tool for further investigation, particularly in issues of stellar evolution. The confirmation of his estimated stellar diameters by Michelson in 1920 proved crucial in convincing astronomers unused to Eddington's intuitive, exploratory style. Eddington's theory appeared in mature form in 1926 as The Internal Constitution of the Stars, which became an important text for training an entire generation of astrophysicists.


Eddington was also heavily involved with the development of the first generation of general relativistic cosmological Models. He had been investigating the instability of the Einstein universe when he learned of both Lemaître's 1927 paper postulating an expanding or contracting universe and Hubble's work on the recession on the spiral nebulae. He felt the cosmological constant must have played the crucial role in the universe's evolution from an Einsteinian steady state to its current expanding state, and most of his cosmological investigations focused on the constant's significance and characteristics. In The Mathematical Theory of Relativity, Eddington interpreted the cosmological constant to mean that the universe is "self-gauging".


He is sometimes misunderstood as having promoted the infinite monkey theorem in his 1928 book The Nature of the Physical World, with the phrase "If an army of monkeys were strumming on typewriters, they might write all the books in the British Museum". It is clear from the context that Eddington is not suggesting that the probability of this happening is worthy of serious consideration. On the contrary, it was a rhetorical illustration of the fact that below certain levels of probability, the term improbable is functionally equivalent to impossible.


Eddington died of cancer in the Evelyn Nursing Home, Cambridge, on 22 November 1944. His body was cremated at Cambridge Crematorium (Cambridgeshire) on 27 November 1944; the cremated remains were buried in the grave of his mother in the Ascension Parish Burial Ground in Cambridge.


Ian Barbour, in his book Issues in Science and Religion (1966), p. 133, cites Eddington's The Nature of the Physical World (1928) for a text that argues the Heisenberg Uncertainty Principles provides a scientific basis for "the defense of the idea of human freedom" and his Science and the Unseen World (1929) for support of philosophical idealism "the thesis that reality is basically mental".


It has been claimed that Eddington's observations were of poor quality, and he had unjustly discounted simultaneous observations at Sobral, Brazil, which appeared closer to the Newtonian model, but a 1979 re-analysis with modern measuring equipment and contemporary software validated Eddington's results and conclusions. The quality of the 1919 results was indeed poor compared to later observations, but was sufficient to persuade contemporary astronomers. The rejection of the results from the Brazil expedition was due to a defect in the telescopes used which, again, was completely accepted and well understood by contemporary astronomers.


It should be noted that the Eddington Number for cycling has units (indeed applying it to any physical property will result in E having units). For Example, an E of 62 miles means a Cyclist has covered 62 or more miles on 62 or more days. However, in units of kilometers the 62 miles becomes 100 km. It is possible that the Cyclist, while having covered 100 km on 62 days or more, may not have covered 100 km on 100 days or more. Thus the order of bicyclists may change depending on units used. Using the original miles, one Cyclist may have an Eddington number of 60 – 60 miles (97 km) in 55 days, another of 50 (corresponding to 80 km). However, the latter may be a regular on a distance like this and get a km-Eddington of 80, while the former only had those 60 days riding, and thus stays at a km-Eddington of 60.


Against Albert Einstein and others who advocated determinism, indeterminism—championed by Eddington—says that a physical object has an ontologically undetermined component that is not due to the epistemological limitations of physicists' understanding. The uncertainty principle in quantum mechanics, then, would not necessarily be due to hidden variables but to an indeterminism in nature itself.


Eddington's books and lectures were immensely popular with the public, not only because of Eddington’s clear and entertaining exposition, but also for his willingness to discuss the philosophical and religious implications of the new physics. He argued for a deeply rooted philosophical harmony between scientific investigation and religious mysticism, and also that the positivist nature of modern physics (i.e., relativity and quantum physics) provided new room for personal religious experience and free will. Unlike many other spiritual Scientists, he rejected the idea that science could provide proof of religious propositions.