Gottfried W. Leibniz was bornon July 01, 1646 in Leipzig, Electorate of Saxony, Holy Roman Empire, German, is Philosopher, Mathematician. Gottfried Wilhelm Leibniz was a noted German polymath, philosopher, meta-physicist, historian, lawyer and political advisor. Born in the same era as Isaac Newton, in his lifetime he was accused of plagiarizing Newton’s work, but since 1900, scholars have acknowledged that he developed differential and integral calculus, independently of Newton. Today, he finds an important place in the history of mathematics, being acknowledged also for inventing Leibniz's notation, Law of Continuity and Transcendental Law of Homogeneity. Moreover, his works on binary system form the basis of modern computers. He was also a prolific inventor in the field of mechanical calculator, being first to describe a pinwheel calculator, later inventing the Leibniz wheel. In the field of philosophy, he views are considered optimistic and in metaphysics, he is best-known for his theory of monads, which he described as elementary particles with blurred perceptions of one another. Unfortunately, for a man as talented as he was, he received little appreciation during his life time and died a lonely death in Hanover; his funeral being shunned by all except his private secretary.

** Gottfried W. Leibniz is a member of Scientists**

21. Juny am Sontag 1646 Ist mein Sohn Gottfried Wilhelm, post sextam vespertinam 1/4 uff 7 uhr abents zur welt gebohren, im Wassermann.

1622

Leibniz's first position was as a salaried secretary to an alchemical society in Nuremberg. He knew fairly little about the subject at that time but presented himself as deeply learned. He soon met Johann Christian von Boyneburg (1622–1672), the dismissed chief minister of the Elector of Mainz, Johann Philipp von Schönborn. Von Boyneburg hired Leibniz as an assistant, and shortly thereafter reconciled with the Elector and introduced Leibniz to him. Leibniz then dedicated an essay on law to the Elector in the hope of obtaining employment. The stratagem worked; the Elector asked Leibniz to assist with the redrafting of the legal code for the Electorate. In 1669, Leibniz was appointed assessor in the Court of Appeal. Although von Boyneburg died late in 1672, Leibniz remained under the employment of his widow until she dismissed him in 1674.

1630

Among the few people in north Germany to accept Leibniz were the Electress Sophia of Hanover (1630–1714), her daughter Sophia Charlotte of Hanover (1668–1705), the Queen of Prussia and his avowed disciple, and Caroline of Ansbach, the consort of her grandson, the Future George II. To each of these women he was correspondent, adviser, and friend. In turn, they all approved of Leibniz more than did their spouses and the Future king George I of Great Britain.

1646

Gottfried Leibniz was born on 1 July 1646, toward the end of the Thirty Years' War, in Leipzig, Saxony, to Friedrich Leibniz and Catharina Schmuck. Friedrich noted in his family journal:

1663

In April 1661 he enrolled in his father's former university at age 15, and completed his bachelor's degree in Philosophy in December 1662. He defended his *Disputatio Metaphysica de Principio Individui* (*Metaphysical Disputation on the Principle of Individuation*), which addressed the principle of individuation, on 9 June 1663. Leibniz earned his master's degree in Philosophy on 7 February 1664. He published and defended a dissertation *Specimen Quaestionum Philosophicarum ex Jure collectarum* (*An Essay of Collected Philosophical Problems of Right*), arguing for both a theoretical and a pedagogical relationship between philosophy and law, in December 1664. After one year of legal studies, he was awarded his bachelor's degree in Law on 28 September 1665. His dissertation was titled *De conditionibus* (*On Conditions*).

1666

Leibniz then enrolled in the University of Altdorf and quickly submitted a thesis, which he had probably been working on earlier in Leipzig. The title of his thesis was *Disputatio Inauguralis de Casibus Perplexis in Jure* (*Inaugural Disputation on Ambiguous Legal Cases*). Leibniz earned his license to practice law and his Doctorate in Law in November 1666. He next declined the offer of an academic appointment at Altdorf, saying that "my thoughts were turned in an entirely different direction".

1669

In this regard, a 1669 invitation from the John Frederick of Brunswick to visit Hanover proved to have been fateful. Leibniz had declined the invitation, but had begun corresponding with the duke in 1671. In 1673, the duke offered Leibniz the post of counsellor. Leibniz very reluctantly accepted the position two years later, only after it became clear that no employment in Paris, whose intellectual stimulation he relished, or with the Habsburg imperial court, was forthcoming.

1671

In 1671, Leibniz began to invent a machine that could execute all four arithmetic operations, gradually improving it over a number of years. This "stepped reckoner" attracted fair attention and was the basis of his election to the Royal Society in 1673. A number of such machines were made during his years in Hanover by a craftsman working under his supervision. They were not an unambiguous success because they did not fully mechanize the carry operation. Couturat reported finding an unpublished note by Leibniz, dated 1674, describing a machine capable of performing some algebraic operations. Leibniz also devised a (now reproduced) cipher machine, recovered by Nicholas Rescher in 2010. In 1693, Leibniz described a design of a machine which could, in theory, integrate differential equations, which he called "integraph".

1672

Thus Leibniz went to Paris in 1672. Soon after arriving, he met Dutch Physicist and Mathematician Christiaan Huygens and realised that his own knowledge of mathematics and physics was patchy. With Huygens as his mentor, he began a program of self-study that soon pushed him to making major contributions to both subjects, including discovering his version of the differential and integral calculus. He met Nicolas Malebranche and Antoine Arnauld, the leading French Philosophers of the day, and studied the writings of Descartes and Pascal, unpublished as well as published. He befriended a German Mathematician, Ehrenfried Walther von Tschirnhaus; they corresponded for the rest of their lives.

1673

The mission ended abruptly when news of the Elector's death (12 February 1673) reached them. Leibniz promptly returned to Paris and not, as had been planned, to Mainz. The sudden deaths of his two patrons in the same winter meant that Leibniz had to find a new basis for his career.

1674

The Brunswicks tolerated the enormous effort Leibniz devoted to intellectual pursuits unrelated to his duties as a courtier, pursuits such as perfecting calculus, writing about other mathematics, logic, physics, and philosophy, and keeping up a vast correspondence. He began working on calculus in 1674; the earliest evidence of its use in his surviving notebooks is 1675. By 1677 he had a coherent system in hand, but did not publish it until 1684. Leibniz's most important mathematical papers were published between 1682 and 1692, usually in a journal which he and Otto Mencke founded in 1682, the *Acta Eruditorum*. That journal played a key role in advancing his mathematical and scientific reputation, which in turn enhanced his eminence in diplomacy, history, theology, and philosophy.

1675

Leibniz is credited, along with Sir Isaac Newton, with the discovery of calculus (differential and integral calculus). According to Leibniz's notebooks, a critical breakthrough occurred on 11 November 1675, when he employed integral calculus for the first time to find the area under the graph of a function `y` = `f`(`x`). He introduced several notations used to this day, for instance the integral sign ∫, representing an elongated S, from the Latin word *summa*, and the d used for differentials, from the Latin word *differentia*. This cleverly suggestive notation for calculus is probably his most enduring mathematical legacy. Leibniz did not publish anything about his calculus until 1684. Leibniz expressed the inverse relation of integration and differentiation, later called the fundamental theorem of calculus, by means of a figure in his 1693 paper *Supplementum geometriae dimensoriae...*. However, James Gregory is credited for the theorem's discovery in geometric form, Isaac Barrow proved a more generalized geometric version, and Newton developed supporting theory. The concept became more transparent as developed through Leibniz's formalism and new notation. The product rule of differential calculus is still called "Leibniz's law". In addition, the theorem that tells how and when to differentiate under the integral sign is called the Leibniz integral rule.

1676

Because Leibniz was a mathematical novice when he first wrote about the *characteristic*, at first he did not conceive it as an algebra but rather as a universal language or script. Only in 1676 did he conceive of a kind of "algebra of thought", modeled on and including conventional algebra and its notation. The resulting *characteristic* included a logical calculus, some combinatorics, algebra, his *analysis situs* (geometry of situation), a universal concept language, and more.

1677

In 1677, Leibniz called for a European confederation, governed by a council or senate, whose members would represent entire nations and would be free to vote their consciences; this is sometimes considered an anticipation of the European Union. He believed that Europe would adopt a uniform religion. He reiterated these proposals in 1715.

1679

Leibniz was groping towards hardware and software concepts worked out much later by Charles Babbage and Ada Lovelace. In 1679, while mulling over his binary arithmetic, Leibniz imagined a machine in which binary numbers were represented by marbles, governed by a rudimentary sort of punched cards. Modern electronic digital computers replace Leibniz's marbles moving by gravity with shift registers, voltage gradients, and pulses of electrons, but otherwise they run roughly as Leibniz envisioned in 1679.

1684

Leibniz arranged the coefficients of a system of linear equations into an array, now called a matrix, in order to find a solution to the system if it existed. This method was later called Gaussian elimination. Leibniz laid down the foundations and theory of determinants, although Seki Kowa discovered determinants well before Leibniz.. His works show calculating the determinants using cofactors. Calculating the determinant using cofactors is named the Leibniz formula. Finding the determinant of a matrix using this method proves impractical with large *n*, requiring to calculate *n!* products and the number of n-permutations. He also solved systems of linear equations using determinants, which is now called Cramer's rule. This method for solving systems of linear equations based off of determinants was found in 1684 by Leibniz (Cramer published his findings in 1750). Although Gaussian elimination requires $O(n^{3})$ arithmetic operations, linear algebra textbooks still teach cofactor expansion before LU factorization .

1685

Leibniz began promoting a project to use windmills to improve the mining operations in the Harz Mountains. This project did little to improve mining operations and was shut down by Duke Ernst August in 1685.

1686

Leibniz dated his beginning as a Philosopher to his *Discourse on Metaphysics*, which he composed in 1686 as a commentary on a running dispute between Nicolas Malebranche and Antoine Arnauld. This led to an extensive and valuable correspondence with Arnauld; it and the *Discourse* were not published until the 19th century. In 1695, Leibniz made his public entrée into European philosophy with a journal article titled "New System of the Nature and Communication of Substances". Between 1695 and 1705, he composed his *New Essays on Human Understanding*, a lengthy commentary on John Locke's 1690 *An Essay Concerning Human Understanding*, but upon learning of Locke's 1704 death, lost the Desire to publish it, so that the *New Essays* were not published until 1765. The *Monadologie*, composed in 1714 and published posthumously, consists of 90 aphorisms.

1687

The Elector Ernest Augustus commissioned Leibniz to write a history of the House of Brunswick, going back to the time of Charlemagne or earlier, hoping that the resulting book would advance his dynastic ambitions. From 1687 to 1690, Leibniz traveled extensively in Germany, Austria, and Italy, seeking and finding archival materials bearing on this project. Decades went by but no history appeared; the next Elector became quite annoyed at Leibniz's apparent dilatoriness. Leibniz never finished the project, in part because of his huge output on many other fronts, but also because he insisted on writing a meticulously researched and erudite book based on archival sources, when his patrons would have been quite happy with a short popular book, one perhaps little more than a genealogy with commentary, to be completed in three years or less. They never knew that he had in fact carried out a fair part of his assigned task: when the material Leibniz had written and collected for his history of the House of Brunswick was finally published in the 19th century, it filled three volumes.

1688

While making his grand tour of European archives to research the Brunswick family history that he never completed, Leibniz stopped in Vienna between May 1688 and February 1689, where he did much legal and diplomatic work for the Brunswicks. He visited mines, talked with mine Engineers, and tried to negotiate export contracts for lead from the ducal mines in the Harz mountains. His proposal that the streets of Vienna be lit with lamps burning rapeseed oil was implemented. During a formal audience with the Austrian Emperor and in subsequent memoranda, he advocated reorganizing the Austrian economy, reforming the coinage of much of central Europe, negotiating a Concordat between the Habsburgs and the Vatican, and creating an imperial research library, official archive, and public insurance fund. He wrote and published an important paper on mechanics.

1691

Leibniz was appointed Librarian of the Herzog August Library in Wolfenbüttel, Lower Saxony, in 1691.

1692

Although the mathematical notion of function was implicit in trigonometric and logarithmic tables, which existed in his day, Leibniz was the first, in 1692 and 1694, to employ it explicitly, to denote any of several geometric concepts derived from a curve, such as abscissa, ordinate, tangent, chord, and the perpendicular. In the 18th century, "function" lost these geometrical associations. Leibniz also believed that the sum of an infinite number of zeros would equal to one half using the analogy of the creation of the world from nothing. Leibniz was also one the pioneers in actuarial science, calculating the purchase price of life annuities and the liquidation of a state's debt.

1695

While Leibniz was no apologist for absolute monarchy like Hobbes, or for tyranny in any form, neither did he echo the political and constitutional views of his contemporary John Locke, views invoked in support of democracy, in 18th-century America and later elsewhere. The following excerpt from a 1695 letter to Baron J. C. Boyneburg's son Philipp is very revealing of Leibniz's political sentiments:

1700

Leibniz emphasized that research was a collaborative endeavor. Hence he warmly advocated the formation of national scientific societies along the lines of the British Royal Society and the French Academie Royale des Sciences. More specifically, in his correspondence and travels he urged the creation of such societies in Dresden, Saint Petersburg, Vienna, and Berlin. Only one such project came to fruition; in 1700, the Berlin Academy of Sciences was created. Leibniz drew up its first statutes, and served as its first President for the remainder of his life. That Academy evolved into the German Academy of Sciences, the publisher of the ongoing critical edition of his works.

1708

In 1708, John Keill, writing in the journal of the Royal Society and with Newton's presumed blessing, accused Leibniz of having plagiarised Newton's calculus. Thus began the calculus priority dispute which darkened the remainder of Leibniz's life. A formal investigation by the Royal Society (in which Newton was an unacknowledged participant), undertaken in response to Leibniz's demand for a retraction, upheld Keill's charge. Historians of mathematics writing since 1900 or so have tended to acquit Leibniz, pointing to important differences between Leibniz's and Newton's versions of calculus.

1710

Leibniz's philosophical thinking appears fragmented, because his philosophical writings consist mainly of a multitude of short pieces: journal articles, manuscripts published long after his death, and many letters to many correspondents. He wrote only two book-length philosophical treatises, of which only the *Théodicée* of 1710 was published in his lifetime.

1711

From 1711 until his death, Leibniz was engaged in a dispute with John Keill, Newton and others, over whether Leibniz had invented calculus independently of Newton. This subject is treated at length in the article Leibniz–Newton calculus controversy.

1716

Leibniz died in Hanover in 1716: at the time, he was so out of favor that neither George I (who happened to be near Hanover at that time) nor any fellow courtier other than his personal secretary attended the funeral. Even though Leibniz was a life member of the Royal Society and the Berlin Academy of Sciences, neither organization saw fit to honor his passing. His grave went unmarked for more than 50 years. Leibniz was eulogized by Fontenelle, before the French Academy of Sciences in Paris, which had admitted him as a foreign member in 1700. The eulogy was composed at the behest of the Duchess of Orleans, a niece of the Electress Sophia.

1765

Leibniz's long march to his present glory began with the 1765 publication of the *Nouveaux Essais*, which Kant read closely. In 1768, Louis Dutens edited the first multi-volume edition of Leibniz's writings, followed in the 19th century by a number of editions, including those edited by Erdmann, Foucher de Careil, Gerhardt, Gerland, Klopp, and Mollat. Publication of Leibniz's correspondence with notables such as Antoine Arnauld, Samuel Clarke, Sophia of Hanover, and her daughter Sophia Charlotte of Hanover, began.

1847

Leibniz is one of the most important logicians between Aristotle and 1847, when George Boole and Augustus De Morgan each published books that began modern formal logic. Leibniz enunciated the principal properties of what we now call conjunction, disjunction, negation, identity, set inclusion, and the empty set. The principles of Leibniz's logic and, arguably, of his whole philosophy, reduce to two:

1895

Leibniz mainly wrote in three languages: scholastic Latin, French and German. During his lifetime, he published many pamphlets and scholarly articles, but only two "philosophical" books, the *Combinatorial Art* and the *Théodicée*. (He published numerous pamphlets, often anonymous, on behalf of the House of Brunswick-Lüneburg, most notably the "De jure suprematum" a major consideration of the nature of sovereignty.) One substantial book appeared posthumously, his *Nouveaux essais sur l'entendement humain*, which Leibniz had withheld from publication after the death of John Locke. Only in 1895, when Bodemann completed his catalogue of Leibniz's manuscripts and correspondence, did the enormous extent of Leibniz's *Nachlass* become clear: about 15,000 letters to more than 1000 recipients plus more than 40,000 other items. Moreover, quite a few of these letters are of essay length. Much of his vast correspondence, especially the letters dated after 1700, remains unpublished, and much of what is published has been so only in recent decades. The amount, variety, and disorder of Leibniz's writings are a predictable result of a situation he described in a letter as follows:

1900

In 1900, Bertrand Russell published a critical study of Leibniz's metaphysics. Shortly thereafter, Louis Couturat published an important study of Leibniz, and edited a volume of Leibniz's heretofore unpublished writings, mainly on logic. They made Leibniz somewhat respectable among 20th-century analytical and linguistic Philosophers in the English-speaking world (Leibniz had already been of great influence to many Germans such as Bernhard Riemann). For Example, Leibniz's phrase *salva veritate*, meaning interchangeability without loss of or compromising the truth, recurs in Willard Quine's writings. Nevertheless, the secondary literature on Leibniz did not really blossom until after World War II. This is especially true of English speaking countries; in Gregory Brown's bibliography fewer than 30 of the English language entries were published before 1946. American Leibniz studies owe much to Leroy Loemker (1904–1985) through his translations and his interpretive essays in LeClerc (1973).

1901

The systematic cataloguing of all of Leibniz's *Nachlass* began in 1901. It was hampered by two world wars and decades of German division in two states with the cold war's "iron curtain" in between, separating scholars, and also scattering portions of his literary estates. The ambitious project has had to deal with seven languages contained in some 200,000 pages of written and printed paper. In 1985 it was reorganized and included in a joint program of German federal and state (*Länder*) academies. Since then the branches in Potsdam, Münster, Hanover and Berlin have jointly published 57 volumes of the critical edition, with an average of 870 pages, and prepared index and concordance works.

1903

Leibniz also wrote a short paper, *Primae veritates*, first published by Louis Couturat in 1903 (pp. 518–523) summarizing his views on metaphysics. The paper is undated; that he wrote it while in Vienna in 1689 was determined only in 1999, when the ongoing critical edition finally published Leibniz's philosophical writings for the period 1677–90. Couturat's reading of this paper was the launching point for much 20th-century thinking about Leibniz, especially among analytic Philosophers. But after a meticulous study of all of Leibniz's philosophical writings up to 1688—a study the 1999 additions to the critical edition made possible—Mercer (2001) begged to differ with Couturat's reading; the jury is still out.

1906

In 1906, Garland published a volume of Leibniz's writings bearing on his many practical inventions and engineering work. To date, few of these writings have been translated into English. Nevertheless, it is well understood that Leibniz was a serious Inventor, Engineer, and applied scientist, with great respect for practical life. Following the motto *theoria cum praxi*, he urged that theory be combined with practical application, and thus has been claimed as the father of applied science. He designed wind-driven propellers and water pumps, mining machines to extract ore, hydraulic presses, lamps, submarines, clocks, etc. With Denis Papin, he invented a steam engine. He even proposed a method for desalinating water. From 1680 to 1685, he struggled to overcome the chronic flooding that afflicted the ducal silver mines in the Harz Mountains, but did not succeed.

1951

Six important collections of English translations are Wiener (1951), Parkinson (1966), Loemker (1969), Ariew and Garber (1989), Woolhouse and Francks (1998), and Strickland (2006). The ongoing critical edition of all of Leibniz's writings is *Sämtliche Schriften und Briefe*.

1954

Leibniz was the first to use the term *analysis situs*, later used in the 19th century to refer to what is now known as topology. There are two takes on this situation. On the one hand, Mates, citing a 1954 paper in German by Jacob Freudenthal, argues:

1960

The use of infinitesimals in mathematics was frowned upon by followers of Karl Weierstrass, but survived in science and engineering, and even in rigorous mathematics, via the fundamental computational device known as the differential. Beginning in 1960, Abraham Robinson worked out a rigorous foundation for Leibniz's infinitesimals, using model theory, in the context of a field of hyperreal numbers. The resulting non-standard analysis can be seen as a belated vindication of Leibniz's mathematical reasoning. Robinson's transfer principle is a mathematical implementation of Leibniz's heuristic law of continuity, while the standard part function implements the Leibnizian transcendental law of homogeneity.

1961

Leibniz may have been the first computer scientist and information theorist. Early in life, he documented the binary numeral system (base 2), then revisited that system throughout his career. While Leibniz was examining other cultures to compare his metaphysical views, he encountered an ancient Chinese book *I Ching*. Leibniz interpreted a diagram which showed yin and yang and corresponded it to a zero and one. More information can be found in the Sinophile section. Leibniz may have plagiarized Juan Caramuel y Lobkowitz and Thomas Harriot, who independently developed the binary system, as he was familiar with their works on the binary system. Juan Caramuel y Lobkowitz worked extensively on logarithms including logarithms with base 2. Thomas Harriot's manuscripts contained a table of binary numbers and their notation, which he realized any number could be written on a base 2 system. Regardless, Leibniz simplified the binary system and articulated logical properties such as conjunction, disjunction, negation, identity, inclusion, and the empty set. He anticipated Lagrangian interpolation and algorithmic information theory. His calculus ratiocinator anticipated aspects of the universal Turing machine. In 1961, Norbert Wiener suggested that Leibniz should be considered the patron saint of cybernetics.

1974

Leibniz's discoveries of Boolean algebra and of symbolic logic, also relevant to mathematics, are discussed in the preceding section. The best overview of Leibniz's writings on calculus may be found in Bos (1974).

1985

In 1985, the German government created the Leibniz Prize, offering an annual award of 1.55 million euros for experimental results and 770,000 euros for theoretical ones. It was the worlds largest prize for scientific achievement prior to the Fundamental Physics Prize.

2013

The collection of manuscript papers of Leibniz at the Gottfried Wilhelm Leibniz Bibliothek – Niedersächische Landesbibliothek were inscribed on UNESCO's Memory of the World Register in 2007.

2014

Leibniz devoted considerable intellectual and diplomatic effort to what would now be called ecumenical endeavor, seeking to reconcile first the Roman Catholic and Lutheran churches, and later the Lutheran and Reformed churches. In this respect, he followed the Example of his early patrons, Baron von Boyneburg and the Duke John Frederick—both cradle Lutherans who converted to Catholicism as adults—who did what they could to encourage the reunion of the two faiths, and who warmly welcomed such endeavors by others. (The House of Brunswick remained Lutheran because the Duke's children did not follow their father.) These efforts included corresponding with the French bishop Jacques-Bénigne Bossuet, and involved Leibniz in some theological controversy. He evidently thought that the thoroughgoing application of reason would suffice to heal the breach caused by the Reformation.

2017

Nicholas Jolley has surmised that Leibniz's reputation as a Philosopher is now perhaps higher than at any time since he was alive. Analytic and contemporary philosophy continue to invoke his notions of identity, individuation, and possible worlds. Work in the history of 17th- and 18th-century ideas has revealed more clearly the 17th-century "Intellectual Revolution" that preceded the better-known Industrial and commercial revolutions of the 18th and 19th centuries.

2019

Later in Leibniz’s career (after the death of von Boinburg), Leibniz moved to Paris and accepted a position as a librarian in the Hanoverian court of Johann Friedrich, Duke of Brunswick-Luneburg. Leibniz’s predecessor, Tobias Fleischer, had already created a cataloging system for the Duke’s library but it was a clumsy attempt. At this library, Leibniz focused more on advancing the library than on the cataloging. For instance, within a month of taking the new position, he developed a comprehensive plan to expand the library. He was one of the first to consider developing a core collection for a library and felt “that a library for display and ostentation is a luxury and indeed superfluous, but a well-stocked and organized library is important and useful for all areas of human endeavor and is to be regarded on the same level as schools and churches”. Unfortunately, Leibniz lacked the funds to develop the library in this manner. After working at this library, by the end of 1690 Leibnez was appointed as privy-councilor and librarian of the Bibliotheca Augusta at Wolfenbuettel. It was an extensive library with at least 25,946 printed volumes. At this library, Leibniz sought to improve the catalog. He was not allowed to make complete changes to the existing closed catalog, but was allowed to improve upon it so he started on that task immediately. He created an alphabetical author catalog and had also created other cataloging methods that were not implemented. While serving as librarian of the ducal libraries in Hanover and Wolfenbuettel, Leibniz effectively became one of the founders of library science. He also designed a book indexing system in ignorance of the only other such system then extant, that of the Bodleian Library at Oxford University. He also called on publishers to distribute abstracts of all new titles they produced each year, in a standard form that would facilitate indexing. He hoped that this abstracting project would eventually include everything printed from his day back to Gutenberg. Neither proposal met with success at the time, but something like them became standard practice among English language publishers during the 20th century, under the aegis of the Library of Congress and the British Library.

Scientists

Scientists

Scientists

Scientists

Scientists

Scientists

Scientists

Scientists

Scientists

Scientists